Bounded noncommutative geometry and boundary actions of hyperbolic groups

نویسنده

  • Heath Emerson
چکیده

We use the canonical Lipschitz geometry available on the boundary of a hyperbolic group to construct finitely summable Fredholm modules over the crossed product of the boundary action. The procedure yields a full set of representatives of the K-homology of the crossed product, and all of them are p-summable for p in an appropriate range related to the geometry of the boundary. By restricting these boundary Fredholm modules to the reduced group C∗-algebra of the group, we obtain classes in the K-homology of the (reduced) group C∗-algebra. This implies various results about the (reduced) representation ring, for example that every class in the representation ring of a classical hyperbolic group of dimension n is represented by a n summable Fredholm module – generalizing an observation of Connes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Noncommutative Poincaré Duality for Boundary Actions of Hyperbolic Groups

For a large class of word hyperbolic groups Γ the cross product C∗-algebras C(∂Γ)⋊Γ, where ∂Γ denotes the Gromov boundary of Γ satisfy Poincaré duality in K-theory. This class strictly contains fundamental groups of compact, negatively curved manifolds. We discuss the general notion of Poincaré duality for C∗-algebras, construct the fundamental classes for the aforementioned algebras, and prove...

متن کامل

Hyperbolic Geometry on the Unit Ball of B(h) and Dilation Theory

In this paper we continue our investigation concerning the hyperbolic geometry on the noncommutative ball [B(H)]−1 := n (X1, . . . ,Xn) ∈ B(H) n : ‖X1X ∗ 1 + · · ·+XnX ∗ n‖ 1/2 ≤ 1 o , where B(H) is the algebra of all bounded linear operators on a Hilbert space H, and its implications to noncommutative function theory. The central object is an intertwining operator LB,A of the minimal isometric...

متن کامل

A brief introduction to quaternion matrices and linear algebra and on bounded groups of quaternion matrices

The division algebra of real quaternions, as the only noncommutative normed division real algebra up to isomorphism of normed algebras, is of great importance. In this note, first we present a brief introduction to quaternion matrices and quaternion linear algebra. This, among other things, will help us present the counterpart of a theorem of Herman Auerbach in the setting of quaternions. More ...

متن کامل

Solution of Thermo-Fluid problems in Bounded Domains via the Numerical Panel Method

The classical panel method has been extensively used in external aerodynamics to calculate ideal flow fields around moving vehicles or stationary structures in unbounded domains. However, the panel method, as a somewhat simpler implementation of the boundary element method, has rarely been employed to solve problems in closed complex domains. This paper aims at filling this gap and discusses th...

متن کامل

Boundary amenability of hyperbolic spaces

It is well-known that a Kleinian group is amenable if and only if it is elementary. We establish an analogous property for equivalence relations and foliations with Gromov hyperbolic leaves: they are amenable if and only if they are elementary in the sense that one can assign (in a measurable way) to any leaf a finite subset of its hyperbolic boundary (as in the group case, such subsets cannot ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013